Image Processing Techniques: What Are Bounding Boxes?

Jul 25, 2020

Bounding boxes are one of the most popular—and recognized tools when it comes to image processing for image and video annotation projects.

Image processing is one of the main reasons why computer vision continues to improve and drive innovative AI-based technologies. From self-driving cars to facial recognition technology—computer vision applications are the face of new tech.

But image processing can’t be as simple as drawing rectangles around objects—right? How do bounding boxes work, and what are the key elements that make this such a useful tool for annotators looking to create reliable datasets?

Bounding Box Image Processing: What You Need to Know

A bounding box is an imaginary rectangle that serves as a point of reference for object detection and creates a collision box for that object.

Data annotators draw these rectangles over images, outlining the object of interest within each image by defining its X and Y coordinates. This makes it easier for machine learning algorithms to find what they’re looking for, determine collision paths, and conserves valuable computing resources.

Bounding boxes are one of the most popular image annotation techniques in deep learning. Compared to other image processing methods, this method can reduce costs and increase annotation efficiency.

Using Bounding Boxes for Object Detection

But how does object detection work in relation to bounding boxes? Answering this question requires looking at object detection as two components: object classification and object localization. In other words, to detect an object in an image, the computer needs to know what it is and where it is.

Take self-driving cars as an example. An annotator will draw bounding boxes around other vehicles and label them. This helps train an algorithm to understand what vehicles look like. Annotating objects such as vehicles, traffic signals, and pedestrians makes it possible for autonomous vehicles to maneuver busy streets safely. Self-driving car perception models rely heavily on bounding boxes to make this possible.

However, it’s important to note that a single bounding box doesn’t guarantee a perfect prediction rate. Enhanced object detection requires many bounding boxes in combination with data augmentation techniques.

Common Use Cases for Bounding Boxes

There are a variety of use cases for image processing and bounding boxes. Some of the more popular ones include:

Bounding boxes are used in all of these areas to train algorithms to identify patterns. An insurance company may leverage machine learning to document insurance claims for car accidents, while an agriculture company could use it to identify what stage of growth a plant is in.

Professional Bounding Box Annotation Services

For those of us working in the AI industry, you may be familiar with the phrase “garbage in, garbage out.” This is spot-on. Feeding your system inaccurate training datasets is one of the best ways to sabotage your next computer vision project.

Misaligned bounding boxes throw a wrench in your algorithm and can take significant time to diagnose and fix. That’s why AI companies often choose to outsource image and video annotation to professional annotators. AI learns from us. Don’t teach it the wrong lessons. Rely on video and image annotation solutions that work.

Access the right tools, techniques, and expert annotators with Keymakr. We offer affordable image- and video-based training datasets delivered on time for your next machine learning project.

Are you interested in pixel-perfect results that fit within your budget? Get in touch with a member of our team to schedule your personalized demo today.

Great! You've successfully subscribed.
Great! Next, complete checkout for full access.
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.